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Abstract. A line-VISAR (velocity interferometer) is an important diagnostic in shock physics, simultaneously measuring many
fringe histories of adjacent portions of a target splayed along a line on a target, with fringes recorded vs time and space by a
streak camera. Due to laser speckle the reflected intensity may be uneven spatially, and due to irregularities in the streak camera
electron optics the phase along the slit may be slightly nonlinear. Conventional fringe analysis algorithms which do not properly
model these variations can su↵er from inferred velocity errors. A speckle-adaptive algorithm has been developed which senses
the interferometer and illumination parameters for each individual row (spatial position Y) of the 2d interferogram, so that the
interferogram can be compensated for Y-dependent nonfringing intensity, fringe visibility, and nonlinear phase distribution. In
numerical simulations and on actual data we have found this individual row-by-row modeling improves the accuracy of the result,
compared to a conventional column-by-column analysis approach.

July 29, 2015

INTRODUCTION

The VISAR velocity interferometer[1, 2, 3] is an important diagnostic for shock physics and equation of state (EOS)
experiments, that measures the time history of Doppler shifted light reflected from shock or ramp loaded targets.
Various algorithms for converting streak camera interferogram fringes to a complex signal W(t) (i.e. phase and mag-
nitude) are popular, including an FFT method[4], a sine fit along a column, and push-pull treatment of four rows at 90
degrees[2, 5]. (The article Ref. 6 on line-imaging velocimetry, section on data reduction, is a good review.)

Here we describe an algorithm, called “Speckle Adaptive”, which we have developed and used over the last few
years which distinguishes itself from conventionally used interferogram analysis algorithms by being able to sense
and then correct for irregular and unknown illumination intensity and interferometer phase versus position Y along
the streak camera slit. (Hence the term “speckle” here is a bit more general and refers to irregularities not only in
illumination but in phase.) Such irregularities in illumination can come from coherent nature of laser illumination.
An example is shown in Fig. 1(a) for rows Y=18 and 32. Irregularities in phase can come from nonlinearities in the
electron optics of a streak camera, acting upon the intended linear splaying of interferometer phase with position along
the slit by tilting an interferometer mirror.

These irregularities can cause errors in the perceived science fringe phase. For intensity variations that are similar
to a fringe period along the Y-direction, they can distort the science fringe phase with a polarity that depends on which
side of the science fringe it overlays. Since the science fringe position usually changes, this results in a velocity error
that tends to form a wiggle in time.

The new algorithm has also been used by this author in processing astronomical dispersed interferometer data for
high resolution spectroscopy and the Doppler exoplanet search, called externally dispersed interferometry[7], where
illumination could vary vs phase step by the passing of clouds or speckle of atmospheric seeing, and where phase steps
were unknown and irregular due to possible air convection or mechanical vibration in the interferometer combined
with the wavelength spanning a wide bandwidth (phase step is reciprocal to wavelength for a given interferometer
mirror displacement). For the astronomical spectroscopic application the horizontal variable in the interferogram is
wavelength or wavenumber, instead of time.

There are applications for this algorithm in interferometric metrology where air convection or mechanical vibra-
tions can create uncertainty of phase steps, while the e↵ect being measured is unchanged.
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FIGURE 1. Streak camera VISAR interferogram data, before (a) and after (b) correction for uneven illumination intensity profile
along slit (Y-direction), deduced from data by method of projections (so that it is not confused by mixture of nonfringing and
fringing components). Bright spots in uncorrected data at X⇠600, Y⇠30 are due to speckle nature of laser illumination. Deduced
profile (c) is used to divide interferogram to produce (b), and blue curve of (d). This yields a more accurate fringe phase history.
Shot s52238 by Ray Smith.
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FIGURE 2. The algorithm iterates between column-by-column and row-by-row processing. The col-by-col processing finds the
time-dependence of the nonfringing NF(t) (e), and two fringing (d) templates Re W(t) and Imag W(t), which is also the science
results. The row-by-row processing finds how much of each of three templates resides in a given horizontal lineout (b), for each Y.
The amount of NF vs Y measures the intensity spatial variation Slit(y), and the polar angle of W(t) measures the phase �(y).
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produces the same results as a conventional algorithm. Hence at the first iteration we achieve the conventional result for W(t). After
that we measure the Y-dependence of the illumination and phase, which can improve the result for next calculation of W(t).

This technique will work best when there are enough wiggles vs time in the fringes that they can be distinguished
from the nonfringing signal (i.e. illumination times target reflectivity), meaning that an overlap integral between the
fringing terms and the nonfringing terms (over some time region which could be a subset of the total record) should be
smaller than any of the self-overlap integrals. The technique will work for records having a decaying portion behind
a shock, or a ramp compression, when the amount of phase change is at least a half fringe or so. It will not work well
for purely discontinuous shocks that do not have a decaying portion behind the shock, since in that case the fringing
and nonfringing signals look similar, being step functions.

Iterate Between Finding Time and Spatial Dependence

Figure 2 and Figure 3 show that the algorithm alternates between looping through the 2d data in a column-by-column
basis (to find the time dependence) and a row-by-row basis (to find the Y dependence). A conventional algorithm,
such as Fourier Transform Method (FTM)[4], would perform only a column-by-column process and make assump-
tions about the spatial dependence of the illumination and phase (usually that they are uniform and linear with Y,
respectively). Whereas with the new algorithm we add an important step where we sense, for each row, what is the
reflected illumination intensity and phase. We do this by decomposing the lineout along a row into three components,
a nonfringing component NF(t) and two fringing components, Re W(t) and Imag W(t). The amplitudes of these com-
ponents tell us the reflected nonfringing intensity Slit

y

and phase �
y

representing each row. (The next section describes
details of the decomposition process.) Then we can normalize the 2d data by this slit function Slit

y

and process it in
the column-by-column approach to yield a better estimate of the time-dependence. Since the column-by-column and
row-by-row processes depend on each others outputs for inputs, we obviously iterate between the two. Figure 4 de-
scribes our column-by-column process, which di↵ers from the conventional by being able to handle irregular phases,
whereas the FTM implicitly requires evenly spaced data in phase.

Note that the starting condition of Slit

y

= 1 and linear phase for the iteration is essentially equivalent to using the
FTM method, so the very first estimate of NF(t) and W(t) will be close to the conventional result. For every iteration
after that, the estimate of NF(t) and W(t) should improve upon the conventional result since it is using improved
information about the illumination and phase spatial dependence. This can only help.

We find that for well behaved data (meaning uniform illumination) we obtain virtually the same result as the
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FIGURE 4. The steps in the column-by-column analysis that finds NF(t) and W(t) for a given t, anticipating that the phase
and fringe magnitude could be irregular, but are known (by the row-by-row process). The fitting of data to a sinusoid (a) having
irregular phase can be represented by vectors (b) that represent the row and whose phase and magnitude are computed from the
coe�cients B, C, from the projection math. The irregular vectors are converted to a regular arrangement by adding or subtracting
any combination of other vectors of the set, provided the nonfringing signal has already been subtracted so that only a sinusoidal
component remains. The “healing” vectors (red, in panel c) needed to bring the irregular vectors into regularity (d) are assembled
from mixtures of three clump vectors (e)(f), which are groups of data, so that weak data naturally does not add much noise to the
final result. The regular set of vectors (d) at uniformly spaced angles �0
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(b) After Normalization

FIGURE 5. VISAR #2 interferogram data of Omega shot s75263, before (a) and after (b) normalization by Slit(y), when the
algorithm senses the amount of nonfringing intensity in each row Y of the data. Note the more vertically uniform intensities of (b).
The center of the six cycle (128 Y-pixel) region of interest shown is from Y=500 in the original data. Velocities obtained from this
data, after ghost subtraction, are shown in Fig. 6. This is data on Qz/LiF/Qz obtained by Amy Lazicki.
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FIGURE 6. Velocity histories of the data of Fig. 5 (Qz/LiF/Qz Omega shot s75263 by Amy Lazicki) processed by the Speckle
Adaptive (red, blue) and conventional (black, gray) techniques, for two VISARs used in parallel having di↵erent velocity per
fringe proportionalities (visar #1, red and black, has more fringes per velocity unit). Ghost fringe analyses were also done using
di↵erent methods, so this is an integral demonstration. See other paper of this conference for this author’s method of Ghost artifact
removal[8].

conventional algorithm, but for “problem child” data which has weak and irregular appearing fringes, we often are able
to obtain cleaner looking velocity results than the conventional method. Figure 5 shows example raw and corrected
image data (normalized by Slit

y

), and Figure 6 the extracted velocities for an omega shot s75263 obtained by Amy
Lazicki. Comparison to velocities using the conventional method shows our method improves upon it, particularly in
the early time period 0.8 to 2.5 ns, where the two independently processed VISARs (red, blue curves) looking at same
target agree better, between themselves, than for the conventional pair (black, gray curves). Our results also include
ghost fringe subtraction using a new method (described in another paper of this conference[8]), and so are an integral
demonstration of our total processing pipeline.

Finding the Y-dependence: Projection Method

We suppose we have provisional knowledge of the time dependence of the fringe W(t) and nonfringing NF(t) com-
ponents, (also called templates or basis functions), and we are given a row Y of intensity data D

y

(t), and we want to
learn the amplitudes of these components. We express W(t) in its real and imaginary parts, also called cosine-like and
sine-like parts, F

c

(t) + iF

s

(t) ⌘ W(t). We have the linear equation
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This magnitude and phase will be the length and direction of a vector (i.e. a complex value), called a designating
vector, one for each row of intensity data (as in Fig. 4). The rule is, whatever manipulations (adding, subtracting,
magnifying etc) that we perform on the designating vector, we also perform on the data row it represents.

To solve for the coe�cients, we use a method of projections (overlap integrals) to generate from Eq. 1 a set of
equations, equal in number to the number of terms (3) of Eq. 1. This set can then directly solved by standard matrix
methods (e.g. Cramer’s rule using determinants). (These equations are similar to those obtained from doing a least
squares minimization approach to the problem.) Let the overlap integral between two template functions F1(t) and
F2(t) be represented by the more compact expression

hF1F2i ⌘
Z

F1(t)F2(t)dt (4)

where we choose the time region of the integration to include at least some portion of the time region prior to the shock,
in order to measure the phase corresponding zero velocity in order to subtract it from the final result for velocity. In
principle, if the speckle variation appears to change with time, then one could consider subdividing the analysis into
di↵erent time regions within which the speckle is consistent. (If the velocity changes continuously one is allowed to
match phases on either side.) But we have not done so yet– we have integrated over the entire record length.

To both sides of Eq. 1 we apply the overlap integral, three times using each of the template functions F

c

(t), F

s

(t),
and NF(t). This creates three linear equations:
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The overlap integrals are quickly computed into values, and the three equations easily solved by Cramer’s rule to yield
the a

y

, b

y

, and c

y

coe�cients. Then we apply Eq. 1 to yield channel phase �
y

, and c

y

is our slit intensity profile.
This decomposition process is least sensitive to noise if the three templates are approximately orthogonal, mean-

ing the cross-overlap is smaller than the self-overlap hF1F2i < hF1F1i etc, and we assume we have normalized
magnitudes of the templates. Approximate orthogonality is easily achieved when the phase changes contiguously for
at least a cycle, since it is rare for NF(t) to have a similar looking sinusoidal wiggle. However, for step-function shapes
such as from clean shocks without following pressure decays, this will be violated.

Finding the Time Dependence: Vector Healing Method

If one could assume the interferometer phase �
y

remains linear with y, i.e. not significantly distorted by the streak
camera imaging, then one could use any of conventional interferogram fringe analysis algorithms to produce W(t)
and NF(t), such as FTM, which implicitly requires linear phase distribution of its data. And for some streak camera
installations this may be a reasonable assumption.

However, we have developed a more general algorithm that can handle unknown and irregular distribution of
phase steps, so that we do not worry about a requirement of linear phase. The first step is to subtract the measured
amount of NF

y

(t) from each of the row data D

y

(t),
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(t)! D
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so that the remaining signal is purely fringing, i.e. purely sinusoidal. This is necessary for the next section where we
regularize a set of irregular vectors. When the data consists purely of a sinusoidal term, we are allowed to add any
combination of other rows to it, and it will retain its vector quality. Because a sinusoid plus a sinusoid remains a
sinusoid.

Figure 4 shows how we convert irregular set of vectors to regular by adding amounts of other vectors (and do
the same operations for the underlying row data). This is a kind of sinusoidal interpolation analogous to linearly
interpolating between two data points to create a new data point in a gap. We have a programmatically simple way of
choosing the “healing” vectors by grouping vectors into clumps so that weak data is naturally weighted weakly. Once



the vectors are regularized, the column data can be processed by any of the conventional methods. We use a simple
Fourier expression for each time column

W = ⌃e

i2⇡�0
y

D

0
y

(9)

where we use the regularized phases �0
y

which are evenly arranged around one cycle.

ACKNOWLEDGMENTS

Thanks to Amy Lazicki and Ray Smith for Omega VISAR data. Prepared by LLNL under Contract DE-AC52-
07NA27344.

REFERENCES

[1] L. Barker and K. Schuler, J. Appl. Phys. 45, 3692–3693 (1974).
[2] W. Hemsing, Rev. Sci. Instr. 50, 73–78 (1979).
[3] D. Dolan, Sandia National Laboratory Tech. Rep. SAND2006-1950 (2006).
[4] M. Takeda, H. Ina, and S. Kobayashi, Journal of the Optical Society of America (1917-1983) 72, p. 156

January (1982).
[5] W. M. Trott, M. D. Knudson, L. C. Chhabildas, and J. R. Asay, “Measurements of spatially resolved veloc-

ity variations in shock compressed heterogeneous materials using a line-imaging velocity interferometer,” in
American Institute of Physics Conference Series, American Institute of Physics Conference Series, Vol. 505
(2000), pp. 993–998.

[6] P. M. Celliers, D. K. Bradley, G. W. Collins, D. G. Hicks, T. R. Boehly, and W. J. Armstrong, Review of
Scientific Instruments 75, 4916–4929 November (2004).

[7] D. J. Erskine, J. Edelstein, M. Sirk, E. Wishnow, Y. Ishikawa, E. McDonald, and W. V. Shourt, “High Reso-
lution Broad-Band Spectroscopy in the NIR Using the TripleSpec Externally Dispersed Interferometer at the
Hale Telescope,” in Ground-based and Airborne Instrumentation V, Proc. SPIE, Vol. 9147 (2014) p. 914717.

[8] D. J. Erskine, “Ghost Fringe Removal Techniques Using Lissajous Data Presentation”, AIP Conf. Series, 19th
APS Topical Conf. Shock Cmprssn. Cndsd. Matter, Tampa, FL, June 14-19, 2015, paper W1.00069.


